Step 6: Routing and Controllers
[image:]
In this step, you'll define how your application responds to client requests to different URIs (Uniform Resource Identifiers). You'll map URIs to specific controller methods.
Routing:
1. The index.php file in the public directory acts as the front controller. It's the entry point for all requests.
2. Inside index.php, you have a $routes array that defines your application's routes. This array maps URIs to controller actions.
Creating Controllers:
1. Create controllers for handling specific parts of your application. We'll use PostController to handle the front-end blog posts.
2. In the app/controllers directory, define the PostController, AdminController, CategoryController, CommentController, and UserController.
Defining Methods:
1. In PostController, define methods like index() for displaying a list of posts and show($id) for displaying a single post.
Mapping Routes:
1. Define routes in the $routes array corresponding to the methods in your controllers.
2. For example, route the home URI '/' to PostController->index and 'posts/show/([0-9]+)' to PostController->show.
Testing Routes:
1. Access the routes in your web browser to make sure they trigger the correct controller methods.
2. Initially, you can add simple echo statements in the controller methods to check if they're being invoked.
Here's an example of what your controller and routing might look like:
PostController.php:
<?php

namespace app\controllers;

class PostController {
 public function index() {
 // Code to fetch and display posts
 echo "All Posts displayed here";
 }

 public function show($id) {
 // Code to display a single post based on the $id
 echo "A Single post displayed";
 }
}
And the index.php file will have the following code
public/index.php:
<?php

require __DIR__ . '/../bootstrap.php';

// Extract the path component from the full URL of the current request
$request = trim(parse_url($_SERVER['REQUEST_URI'], PHP_URL_PATH), '/');
e.g http://phpmvcblog.local/posts/show/1, extract ‘posts/show/1’1)This is what I mean
// Further trim any leading or trailing slashes from the path
$request = trim($request, '/');

$routes = [
 'GET' => [
 '' => ['controller' => '\app\controllers\PostController', 'method' => 'index'],
 'posts/show/([0-9]+)' => ['controller' => 'app\controllers\PostController', 'method' => 'show'],
 // Add more routes for other controllers and actions
],
 // POST routes...
];

// Retrieve the URL path from the current request
$path = $request; (e.g http://phpmvcblog.local/posts/show/1, extract ‘posts/show/1’1)

// Obtain the HTTP method (e.g., GET, POST) of the current request
$method = $_SERVER['REQUEST_METHOD'];

// Iterate over each route defined for the current HTTP method
foreach ($routes[$method] as $route => $info) {
 // Modify the route string to a regular expression for matching URL patterns
 $pattern = preg_replace('#/([0-9]+)#', '/([0-9]+)', $route);

 // Check if the current URL path matches the route pattern
 if (preg_match("#^$pattern$#", $path, $matches)) { e.g posts/show/1 is equal to
'posts/show/([0-9]+)
 // Create an instance of the controller specified in the route information
 $controller = new $info['controller']; e.g PostController

 // Extract any numeric ID present in the URL, default to null if not found
 $id = $matches[1] ?? null;

 // Execute the controller method with parameters based on the request method
 // For POST requests (excluding delete operations), pass both POST data and ID
 if ($method === 'POST' && $info['method'] !== 'delete') {
 $controller->{$info['method']}($_POST, $id);
 } else {
 // For other request methods, pass only the ID
 $controller->{$info['method']}($id);
 }
 // Exit the loop after finding and handling the matching route
 break;
 }
}

// If no route was matched, return a 404 response
if (!isset($controller)) {
 http_response_code(404);
 require BASE_DIR . '/app/views/404.php';
}

Here’s what is happening…
a. Error Reporting Configuration: The code starts by configuring PHP to display all errors, warnings, and notices. For example, if there's a syntax error in your code, this configuration ensures that it is displayed in the browser, aiding in debugging during development.
b. Autoloader Inclusion: The Composer autoloader is included, allowing classes to be loaded on-demand without manual require statements. For instance, when you instantiate a new PostController, Composer will automatically include the PostController.php file based on the namespace and class name.
c. Request URI Extraction: The script extracts the current request's URI path. For example, if a user accesses http://php8blogapp.local/posts/show/1, the script extracts posts/show/1 as the path, which is used to find the corresponding controller and method.
d. Routes Definition: An associative array $routes defines the available routes, linking URI patterns to controllers and methods. For instance, the pattern 'posts/show/([0-9]+)' is linked to PostController's show method, expecting a numeric post ID as a parameter.
e. Route Matching Logic: The code iterates over the routes, using regular expressions to match the extracted path against the route patterns. For example, if the extracted path is posts/show/1, the regex will match this against 'posts/show/([0-9]+)' in the $routes array.
f. Controller Instantiation and Method Invocation: When a route match is found, a new controller object is instantiated, and the appropriate method is called with any parameters from the URL. For instance, matching posts/show/1 instantiates PostController and calls show(1).
g. 404 Error Handling: If no route matches the request, an HTTP 404 status code is sent, and a 404 error page is displayed. So if a user tries to access http://php8blogapp.local/nonexistent/path, they will be presented with the 404 error view.
Through this setup, index.php dynamically handles routing, creating a flexible and maintainable entry point for your web application.
Finally Update the public/.htaccess file with this code
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.+)$ index.php?url=$1 [QSA,L]
The .htaccess file used with Apache web server sets up URL rewriting rules. Here's an explanation of each line:
1. RewriteEngine On:
· This line enables the runtime rewriting engine provided by mod_rewrite, an Apache module. It allows the server to manipulate URLs before determining the appropriate way to handle a request.
2. RewriteCond %{REQUEST_FILENAME} !-f:
· This line is a condition for the following RewriteRule. It checks if the requested filename does not correspond to an existing file (!-f). In other words, if the URL points to a file that actually exists on the server (like an image, a CSS file, etc.), the rule will not be applied.
3. RewriteCond %{REQUEST_FILENAME} !-d:
· Similar to the previous line, this condition checks if the requested filename does not correspond to an existing directory (!-d). So, if the URL points to an existing directory, the rule will not be applied.
4. RewriteRule ^(.+)$ index.php?url=$1 [QSA,L]:
· This line is where the actual URL rewriting occurs. The RewriteRule directive defines a rule for rewriting the URL.
· ^(.+)$ is a regular expression that matches any request (excluding the root /). The ^ symbol indicates the start of the request, (.+) captures one or more of any character, and $ indicates the end of the request.
· index.php?url=$1 is the target of the rewrite. This means that any request (except for real files or directories) is redirected internally to index.php. The original request is passed as a parameter url.
· [QSA,L] are flags for the rewrite rule:
· QSA (Query String Append) means that if there's a query string present on the original URL, it will be appended to the rewrite target.
· L (Last) indicates that this should be the last rule applied; if this rule is matched, no subsequent rules will be processed.
In summary, this .htaccess setup directs all requests (except for existing files and directories) to index.php, allowing a PHP application to handle routing. It's a common setup for PHP frameworks that implement a front controller pattern, where index.php acts as a single entry point for all requests.

image1.png
v (@ chatepT % | M Documents X | LN Blankdiagrar X | @ ofth6Y3hpPh X | G modelscont X R® Model-View-« X [Architecturet X | + = fa] X

c 25 researchgate.net/figure/Model-View-Controller-MVC-design-pattern-Controllers-modify-Ul-aspects-of-a-view-such_fig3_221466992 e W a ,
Apps G Gmail @B YouTube @ Web DevTrainee (@ Canva g] Google Analytics €9 Facebook @ Quora 2 Stackoverflow » [All Bookmarks
Advertisement -
®

\
\=Propeller

Advertisement

modify modify
Controller
ul ul \ 4
| PN \-Propeller -
View SRR A View
modify
Y DP;TA 1
3
changes Model changes b‘o‘b
" a prize, ride e

